
JETServer Concepts

Bradford M. Arant Sr.

A whitepaper on an advanced microservices development environment
for the cloud

2

Contents

1 Overview 5

2 Basic Concepts 7

3 Sessions 9

4 Views 11
4.1 View Components . 12

5 Variables and View Data Sources 15

6 Forms 17

7 Image Library 19

8 Work Flow Networks 21
8.1 Work Flow Units . 21
8.2 Work Flow Queues . 22

8.2.1 Action Queues . 22
8.2.2 External Queues . 22
8.2.3 Decision Queues . 22
8.2.4 Wait Queues . 22
8.2.5 Process Queues . 22

8.3 Permanent Work Flow Procedures 22
8.3.1 Administration Work Flow Procedures 22
8.3.2 Initial Transaction Work Flow Procedure 23

9 Requests 25
9.1 Microservice Methods . 25

10 Defining URL, Links and Deep Links 27

11 Business Entities 29

12 Libraries 31

3

4 CONTENTS

13 Server Directory Structure 33

14 ServerCore Network Platform 35
14.1 Transaction Life Cycle . 35

15 User Interfaces and Tools 37
15.1 View Layout Editor . 37
15.2 Business Entity Editor . 37
15.3 Storyboard Editor . 38

16 Views and User Interface Components 39
16.1 View Hierarchy . 39

17 JET Tag Reference 41
17.1 CALL . 42
17.2 COMMENT . 42
17.3 DATABASE . 42
17.4 EXCLUDE . 42
17.5 EXTRACT . 42
17.6 FOR . 42
17.7 IF.. ELSE . 42
17.8 IFNOROW... ELSE . 42
17.9 IFROW... ELSE . 42
17.10INCLUDE . 42
17.11SYSTEM . 42
17.12TAG . 42
17.13WHILE . 42
17.14WHILEROW . 42

Chapter 1

Overview

JETServer provides a complete environment for developing very powerful and
feature rich web content using standard browsers. It is intended to compete
and replace the aging WordPress environments that comprise a huge number
of websites. JETServer is designed with high performance in mind utilizing a
combination of HTML5, CSS3 and Javascript.

JETServer is designed to support a plugin environment, known as libraries,
for extensibility of capabilities including frameworks, work flows, styles, databases,
etc.

5

6 CHAPTER 1. OVERVIEW

Chapter 2

Basic Concepts

In this chapter we will cover the components that make up the JETServer
environment.

7

8 CHAPTER 2. BASIC CONCEPTS

Chapter 3

Sessions

Sessions provide a congruent and flowing state management for a connected
browser. The states of various elements are stored and kept as a part of the
session information so a browser refresh will not disrupt the work flow intended
by the application logic.

The Session Id is maintained on the browser as a cookie. The cookie is issued
to the browser on the very first response from the first request to the server.

All API interactions are identified as being part of a session. A browser
can only have one session per domain. Sessions can support multiple window
instances and is basically the authorization token. The server can issue a new
Session Id in a response to the browser at any time which will reset the cookie
being created to maintin the Session Id.

The session mechanism will attempt to maintain a state of the interaction
of the request objects present in the view port of the browser. Session variables
also maintain a server based data environment for the session. Session variables
are available to the views and microservice methods using the $[:variable-name]
syntax.

As requests are placed the request URI is saved to the http session. If needed,
perhaps because of a refresh, the page state can be recreated from the saved
URI list. Other data and state information can be stored to the session as well.

9

10 CHAPTER 3. SESSIONS

Chapter 4

Views

Views are document sections that can be placed into the page. Views can be
static or can contain dynamic data elements. Views can also contain other views
in a nested fashion.

Views are implemented as ¡DIV¿ elements within the HTML document struc-
ture.

Views can be used to define overall page layouts by putting other Requests
into a view.

Other more advanced graphical elements can be created by combining views
into a ’view group’.

Views have layout style specifications for the elements contained within
them. Absolute layout allows a WYSIWYG layout with precise pixel location.
Linear layouts line things up either vertically or horizontally. Proportional lay-
outs use percentages so that they scale and constraint layouts are similar but
offer greater flexibility in controlling the expansion/compression of the elements
in the display area.

Views that have URIs attached to them are considered document level views
and will be triggered when the browser makes a get request to the URI.

TABLE elements can also be specified in a view.

11

12 CHAPTER 4. VIEWS

Javascript code can be attached to components within the view or to the
view itself. Custom components can be built that plug into the layout tool
environment and can be designed into the application environment with prebuilt
behaviors. Complex display control can be constructed using these tools.

Views can optionally contain a request element that can be used to provide
a placeholder for subsequent view requests. When these are provided inside a
view the view will act as a template that can encapsulate the subview. Request
viewholders are usually tied to a URL component so that as a session presen-
tation is being created it may use conponents in the URL to determine the
content to display. Hidden requests are requests that use private session data
to determine the content to display.

4.1 View Components

View Components are packaged HTML5, CSS and Javascript elements that are
defined to be used together as a component within another view (usually and
layout view).

Views may utilize HTML constructs to assemble part of its implementation.
The use of ¡IMG¿, ¡FORM¿, ¡INPUT¿, ¡TEXTAREA¿ and a significant list of
other items can be contained within a view.

The view can contain javascript that is used to interact with these compo-
nents.

4.1. VIEW COMPONENTS 13

14 CHAPTER 4. VIEWS

Chapter 5

Variables and View Data
Sources

Data is available to be displayed and represented that is only available when
the views are rendered. Sources of this data are as follows:

Standard variable syntax of just using variable-name will perform a search
for a variable regardless of its type but prioritized by the following order:

1. a variable set using the ¡set¿ tag. These variable persist for the life of the
current transaction only.

2. data retrieved from a POST within a request and are defined as visible
TEXT, BUTTON and TEXTAREA and hidden ¡INPUT¿ fields

3. a session variable set using the ¡setsession¿ tag. These varables persist fo
the entire session.

4. an environment variable from the JETServer runtime environment. These
variables are set when the server is started and do not change for the life
of the server runtime.

5. a mySQL server result table created in the last SELECT statement. The
persistence of these variables is only for the life of the open data path or
until another operation is performed within the same access path to the
database. Each open data path can return results without qualification
and the order of the database specification will determine search order.
When databases are opened for use in content an associated session name
that is used to differentiate multiple open access paths simultaneously.

15

16 CHAPTER 5. VARIABLES AND VIEW DATA SOURCES

Chapter 6

Forms

Using the INPUT tag within a FORM tag allows the submission of the related
form data to the server to be processed as a POST request. A BUTTON can
perform this activity and request a microservices method and pass the form
data along as a parameter to the request.

BUTTONs are attached to server side microservice methods.

17

18 CHAPTER 6. FORMS

Chapter 7

Image Library

Significant content can be provided in the form of images and are used as part of
a design. The image library is not intended to be a photo cataloguing function
but is designed to provide image support to the view elements such as logos.
The View Layout Editor is used to access the image library for inclusion into a
view. Images can be placed in views and resized or rotated.

Imagemagick is used internally to create a scaled and rotated version of
the image for network optimization resulting in improved performance. These
scaled and rotated images exist in the permanent cache and are always checked
first when rendering images to the browser.

Images create a corresponding IMG tag that the browser consumes to request
the selected images.

19

20 CHAPTER 7. IMAGE LIBRARY

Chapter 8

Work Flow Networks

JETServer is a complete work flow engine capable of delivering extremely so-
phisticated work flow requirements on various business data sets. Performing
various activities on business entities creates needs for scheduling follow-ups and
other automatic processed based upon very long time delays or other triggers
that cause the need for more immediate action.

Work flow processes are initiated on a particular business entity and stick to
the entity throughout the definition of the work flow process. At any one time
there could be many work flow tags running on any one piece of data at a time.
As well, work flow processes may initiate another work fow procedure on the
same business entity or a different one that is related.

Work flow processes can be initiated on a button press using the initiate-
WorkFlow API call. They are attached to a business entity and they may trigger
other work flow processe on other entities related to various activities. Work
flow process are very powerful trackers where things otherwise may slip through
the cracks. Watch dog work flows can be ceated to ensure all activities are being
handled and performed to avoid stale data situations.

Work Flow Networks are developed using a graphical flow chart style work-
bench that allows the business process analyst to snap together activities that
are to be performed by automated process and/or user interaction. Work Queue
objects are available to design work lists for users to interact with items requiring
intervention. Users can review various work queues and perform the requested
activities to complete the work flow requirements.

8.1 Work Flow Units

Work flow units are created when a work flow process is initiated on a business
entity. A work flow unit (WFU) contains the business entity and a work flow
identifier and a queue identifier. As the WFU moves through the work flow
patterns the queue identifier is updated to represent its ’state’.

21

22 CHAPTER 8. WORK FLOW NETWORKS

8.2 Work Flow Queues

As work flow units move through the process they move from queue to queue.
The various queue types perform perscribed operations on the work flow unit
moving through the procedure. The queue types are as follows:

1. Action Queues - as work flows are constructed they are placed into a
container called an action queue.

2. External Queues - provides a visual access point to the data entity refer-
enced by the WFU. External queues reference views that are sent to the
client as output to the work flow and the work flow is suspended until an
appropriate POST operation is sent to the server in response to the work
flow requirements.

3. Decision Queues - provides a method to perform tests upon the reference
business entity and branch the work flow based upon the test outcome.

4. Wait Queues - these queues provide a place for the WFU to wait indefinetly
or for perscribed periods of time before the WFU is passed to the next
queue. The wait queue can return a list of WFUs that are currently
contained so that work lists and other lists can be analyzed and worked
with externally to satisfy work flow requirements.

5. Process Queues - these queues can perform a system call to perform ad-
vanced operations and can control the flow of the WFU based upon the
operation’s outcome.

8.2.1 Action Queues

8.2.2 External Queues

8.2.3 Decision Queues

8.2.4 Wait Queues

8.2.5 Process Queues

8.3 Permanent Work Flow Procedures

8.3.1 Administration Work Flow Procedures

Special procedures designed to maintain the basic operations of the website
are contained in an internal area compiled with the executable so they remain
unchangeable without version upgrades.

Upon initial installation and startup of the server a welcome page is pre-
sented with a button the setup the administrative access options. Once this is
accomplished then the administractive mode of the server is entered and the
user is entered into the administration menu functions for the server.

8.3. PERMANENT WORK FLOW PROCEDURES 23

8.3.2 Initial Transaction Work Flow Procedure

Initial work flow begins with the init work flow procedure aptly named ’init’ in
the root folder of the ’worflow’ directory. The init procedure defines the nature
and lifespan of the transaction received from the browser.

If the init procedure is absent in the folder then a default procedure is
used. The default procedure offers the full functionality of the JETServer. It
will receive the user request and do the session lookups and perform the view
hierarchy operations.

Libraries will be searched in the order defined by library list contained with-
ing the libraries subfolder. First match will proide that resource to the rendering
of the current page cycle.

24 CHAPTER 8. WORK FLOW NETWORKS

Chapter 9

Requests

Requests are view ’placeholders’ that can be used to make a request to the server
and have the response be displayed in the viewport of the request. Requests are
the fundamental building block to creating extended content pages.

When specifying a request in a view the URI must be specified. As the view
is rendered to the response buffer on the server it will submit the request to the
specified URI and when the response is received the placeholder will be replaced
with the response data.

The requests made to the server are microservices method calls. They are not
the URIs mentioned in other parts of this document and are intended to address
the microservice method’s address space. Since JETServer uses a technique of
providing the URI to the microservice method it can provide a unique link
designed for that session only with a timestamp embedded resulting in a secure
interaction environment that eliminates stale access to API calls.

Requests are implemented as ¡DIV¿ elements with an id tag that provides
the name of the request.

A request response will contain HTML document data that will be replaced
as the innerHTML of the request ’placeholder’. Variables specified in the view
will be rendered and the HTML is attached to the document structure where
the request exists.

The document content of the response may contain a script tag which con-
tains javascript that executes immediately after the HTML is attached to the
document.

9.1 Microservice Methods

JETServer uses a microservices style architecture and provides access to backend
services through an API set that is designed to interact with the various view
components of the application. In essence the work flow engine will create
microservice functions available only to the session providing a highly secure
API system as all other sessions or attempts at accessing functions will be

25

26 CHAPTER 9. REQUESTS

rejected if the work flow does not permit the operation.
Microservice methods are oriented around the business entity structure and

are used to provide information query handling as well as the add, update and
delete functionality of new business entity instances.

Microservice methods can also be used to provide lists of objects that can
be further used in modifying or removing instances.

Applications can be designed that employ various business logic entities.
Views that define forms for adding new customers or information on books or
some other data entity can be specified and attached to the business entity.
Common lists of objects that have filters applied can be retrieved and views
selected for presentation of the data.

Chapter 10

Defining URL, Links and
Deep Links

Because the session manages the states for presentation the contents of the
page are directly linked to a URL which can be used to recreate the contents
in the event of an interruption. Also, a link is an entry point to the website
that contains a complete structure to recreate the contents. Pages will usually
consist of various viewpoints which make requests upon the server to fulfill the
content requirements specified by a URL.

A URI provides an external access string to be mapped to a site view. When
a browser submits a GET request to a URI that is mapped to the server then
it will return the resulting site marker forcing the session to check its current
state and send the appropriate information.

The URI may be specified as complete or partial. Partial URI specification
will match the pattern check but will also pass additional parameters not spec-
ified into the view so that it may parse the content and provide the appropriate
display result.

27

28 CHAPTER 10. DEFINING URL, LINKS AND DEEP LINKS

Chapter 11

Business Entities

Business entities provide the framework in which to hang all thiese views and
logic. Business entities allow for the description of account, customers, products,
inventories and any other associated data elements that may be used in business
logic consideration.

Instances of business entities are considered entity objects or entity instances.
Interaction with business entities is performed using an object style interface
and JETServer uses mySQL underneath to perform the persistent storage op-
erations.

Views are associated with a business entity combined with a microservice
method to create functionality.

29

30 CHAPTER 11. BUSINESS ENTITIES

Chapter 12

Libraries

Libraries provide extensibility to the JETServer environment by allowing custom
tools, applications, themes, templates, entities and components to be added to
the server and utilized in the presentation. Installed packages are provided a
root namespace and all related content must be contained and extended by the
’library’ root path namespace.

The ’libraries’ subfolder must contain a library list file that contains a simple
list of the order in which the libraries contained herein are to be search for
resolving resouce names. Updates to the library list file will immediately be
applied to the next transaction. Transactions still in process will not be changed.

Libraries can contain many things including full application request flows
that can be integrated into other work flows or used as is.

Local code is setup automatically in a default package named ’local’. The
local package is always searched first when resolving names to finding objects.

The system itself maintains a package space which is where the tools and
control logic are kept. This space is static within the JETServer executable and
is not modifiable.

You can create an empty package and give it a namespace and write cus-
tom items into that package space. This package space can then be saved and
distributed on the JETStore if it provides useful utility to others.

It is intended to provide a JETStore for the user to browse for registered
packages of all kinds from themes to full application work flows. It is hopeful that
someday there will be a rich environment for providing tools and applications
for the JETServer system.

31

32 CHAPTER 12. LIBRARIES

Chapter 13

Server Directory Structure

JETServer depends upon a hierarchical file system to provide the system func-
tions. Libraries are stored as copies of the basic hierarchical structure that act
as a qualified namespace.

33

34 CHAPTER 13. SERVER DIRECTORY STRUCTURE

Chapter 14

ServerCore Network
Platform

JETServer is utilizing the ServerCore library to implement the TCP networking
requirements. Using the Linux operating system and the epoll system architec-
ture JETServer delivers high performance networking with extreme control.

Written in C++ JETServer is designed for performance at all levels of the
technical implementation. Using the core namespace along with the http names-
pace to create the basic core functionality JETServer provides a framework in
which to create complete work flow patterns required to build complex applica-
tions.

14.1 Transaction Life Cycle

JETServer is a complete HTTP request server in full compliance with the latest
standards. Internally it can also mesh itself into a network of JETServers and
will automatically adjust and load balance traffic requests coming through the

35

36 CHAPTER 14. SERVERCORE NETWORK PLATFORM

server.
Being an HTTP request server JETServer must conform to CGI specifica-

tions that are used to interact with the browser.
For e ach received request JETServer will generate

appropriate code sections and output them through
the CGI gateway process for rendering by the browser.

Form Field Data Cache provides access to the form
variables received in the request.When the CGI data
is parsed from the request it is placed in this cache
for access by processes that may require it during the
transaction life cycle.

Chapter 15

User Interfaces and Tools

15.1 View Layout Editor

The View Layout Editor provides a WYSIWYG interface for combining HTML
elements to formulate the presentation. Style sheet activities and parameters
are automatically maintained as elements are manipulated in a graphical en-
vironment. Previews provided by various automatic layout objects including
absolute mode which allows WYSIWYG placement of elements.

Development of a theme editor provides ability to allow user to set various
themes for the graphical elements of the design. Ability to view the layouts
using various theme data configurations provides a useful thematic testing en-
vironment.

The designed view layouts can be saved to create a view library and are
usually associated to an entity and placed into the workflow storyboard.

In order to create a subfunctionlity within a view you can add the request
object into the view layouts. As these layouts are rendered to the browser they
will make their subsequent requests to the server keeping the event chain alive
for the initiating or root request object.

15.2 Business Entity Editor

The Business Entity Editor provides a work management area to create and
maintain business entity related data and the relationship between them. A
repository provides for linking together data description elements with views
and work flow elements to create a feature rich base to construct highly capable
work flows for business and function.

Business Entities can have work flow processes attached to them. Processes
can be developed to interact with other entity work flows using an advanced
event management system.

37

38 CHAPTER 15. USER INTERFACES AND TOOLS

15.3 Storyboard Editor

The Storyboard Editor provides the designer the ability to layout the pages and
their components and design the flow relationships between the elements. As
designs require extending the control elements of various views the storyboard
editor keeps track of the request branching and allows the designer to maintain
control over the hierarchical flow elements of the UI design.

The design approach provides the ability to layout request objects and as-
sociate various URI elements to these internal request objects to generate a
complete presentation of the elements.

Various views can be layed out in the storyboard. Storyboards are based
around the request object as each request object will perform a request activity
which may result in a chain of further request events.

Chapter 16

Views and User Interface
Components

JETServer enables a simple architecture for presenting and controlling the pre-
sentation. Interaction with the user is accomplished with various standard com-
ponents that interact with workflows generated from the events which the com-
ponent may produce.

16.1 View Hierarchy

Views are managed as a hierarchy of nested references to view components
defined in the ’view’ subfolder. The determination of which view to deliver to the
requester is made through the parsing of the requested URL being passed from
the requester. The tree hierarchy is maintained as views are added, changed and
removed from visibility through event processing. If a refresh (F5) is performed
on the URL the engine will render the identical page before the refresh was
requested.

39

40 CHAPTER 16. VIEWS AND USER INTERFACE COMPONENTS

Chapter 17

JET Tag Reference

JET tags can be used within views as well as microservice methods to build
business logic.

41

42 CHAPTER 17. JET TAG REFERENCE

17.1 CALL

17.2 COMMENT

17.3 DATABASE

17.4 EXCLUDE

17.5 EXTRACT

17.6 FOR

17.7 IF.. ELSE

17.8 IFNOROW... ELSE

17.9 IFROW... ELSE

17.10 INCLUDE

17.11 SYSTEM

17.12 TAG

17.13 WHILE

17.14 WHILEROW

