
JETServer Concepts

Bradford M. Arant Sr.

A whitepaper on an advanced microservices development environment
for the cloud



2



Contents

1 Basic Concepts 5
1.1 Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 View Data Sources . . . . . . . . . . . . . . . . . . . . . . 6
1.3 View Components . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Image Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Work Flow Networks . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Business Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Microservice Methods . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 ServerCore Network Platform 11

3 User Interfaces and Tools 13
3.1 View Layout Editor . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Business Entity Editor . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Storyboard Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 JET Tag Reference 15
4.1 CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 EXCLUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 EXTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 IF.. ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 IFNOROW... ELSE . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 IFROW... ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.10 SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.11 TAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.12 WHILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3



4 CONTENTS

4.13 WHILEROW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Chapter 1

Basic Concepts

In this chapter we will cover the components that make up the JETServer
environment.

1.1 Sessions

Sessions provide a congruent and flowing state management for a connected
browser. The states of various elements are stored and kept as a part of the
session information so a browser refresh will not disrupt the work flow intended
by the application logic.

The Session Id is maintained on the browser as a cookie. The cookie is issued
to the browser on the very first response from the first request to the server.

All API interactions are identified as being part of a session. A browser
can only have one session per domain. Sessions can support multiple window
instances and is basically the authorization token. The server can issue a new
Session Id in a response to the browser at any time which will reset the cookie
being created to maintin the Session Id.

The session mechanism will attempt to maintain a state of the interaction
of the request objects present in the view port of the browser. Session variables
also maintain a server based data environment for the session. Session variables
are available to the views and microservice methods using the $[:variable-name]
syntax.

As requests are placed the request URI is saved to the http session. If needed,
perhaps because of a refresh, the page state can be recreated from the saved
URI list. Other data and state information can be stored to the session as well.

1.2 Views

Views are document sections that can be placed into the page. Views can be
static or can contain dynamic data elements. Views can also contain other views
in a nested fashion.

5



6 CHAPTER 1. BASIC CONCEPTS

Views are implemented as ¡DIV¿ elements within the HTML document struc-
ture.

Views can be used to define overall page layouts by putting other Requests
into a view.

Other more advanced graphical elements can be created by combining views
into a ’view group’.

Views have layout style specifications for the elements contained within
them. Absolute layout allows a WYSIWYG layout with precise pixel location.
Linear layouts line things up either vertically or horizontally. Proportional lay-
outs use percentages so that they scale and constraint layouts are similar but
offer greater flexibility in controlling the expansion/compression of the elements
in the display area.

Views that have URIs attached to them are considered document level views
and will be triggered when the browser makes a get request to the URI.

TABLE elements can also be specified in a view.
Javascript code can be attached to components within the view or to the

view itself. Custom components can be built that plug into the layout tool
environment and can be designed into the application environment with prebuilt
behaviors. Complex display control can be constructed using these tools.

Views can optionally contain a subview element that can be used to provide
a placeholder for subsequent view requests. When these are provided inside a
view the view will act as a template that can encapsulate the subview.

1.2.1 View Data Sources

Data is available to be displayed and represented that is only available when
the views are rendered. Sources of this data are as follows:

1. Set variable performed in the view code or from a previously run process
in the same transaction to name a piece of data for later use.

2. CGI data received in the request as form-data is available to the request
handler. Use the [:variable-name] syntax to ensure that CGI data is the
source of the data.

3. Session variables provide access to persistent storage that survives for the
duration of the session.

4. A data result table that was retrieved from an mySQL buffer.

Standard variable syntax of just using variable-name will perform a search
for a variable regardless of its type but prioritized by the following order:

1.3 View Components

Views may utilize HTML constructs to assemble part of its implementation.
The use of ¡IMG¿, ¡FORM¿, ¡INPUT¿, ¡TEXTAREA¿ and a significant list of
other items can be contained within a view.



1.4. FORMS 7

The view can contain javascript that is used to interact with these compo-
nents.

1.4 Forms

Using the INPUT tag within a FORM tag allows the submission of the related
form data to the server to be processed as a POST request. A BUTTON can
perform this activity and request a microservices method and pass the form
data along as a parameter to the request.

BUTTONs are attached to server side microservice methods.

1.5 Image Library

Significant content can be provided in the form of images and are used as part of
a design. The image library is not intended to be a photo cataloguing function
but is designed to provide image support to the view elements such as logos.
Catalogues can be accomplished through other means and usually tie into an
external database system of some kind.

1.6 Work Flow Networks

JETServer is a complete work flow engine capable of delivering extremely so-
phisticated work flow requirements on various business data sets. Performing
various activities on business entities creates needs for scheduling follow-ups and
other automatic processed based upon very long time delays or other triggers
that cause the need for more immediate action.

Work flow processes are initiated on a particular business entity and stick to
the entity throughout the definition of the work flow process. At any one time
there could be many work flow tags running on any one piece of data at a time.

Work flow processes can be initiated on a button press using the initiate-
WorkFlow API call. They are attached to a business entity and they may trigger
other work flow processe on other entities related to various activities. Work
flow process are very powerful trackers where things otherwise may slip through
the cracks. Watch dog work flows can be ceated to ensure all activities are being
handled and performed to avoid stale data situations.

Work Flow Networks are developed using a graphical flow chart style work-
bench that allows the business process analyst to snap together activities that
are to be performed by automated process and/or user interaction. Work Queue
objects are available to design work lists for users to interact with items requiring
intervention. Users can review various work queues and perform the requested
activities to complete the work flow requirements.



8 CHAPTER 1. BASIC CONCEPTS

1.7 Requests

Requests are view ’placeholders’ that can be used to make a request to the server
and have the response be displayed in the viewport of the request. Requests are
the fundamental building block to creating extended content pages.

When specifying a request in a view the URI must be specified. As the view
is rendered to the response buffer on the server it will submit the request to the
specified URI and when the response is received the placeholder will be replaced
with the response data.

The requests made to the server are microservices method calls. They are not
the URIs mentioned in other parts of this document and are intended to address
the microservice method’s address space. Since JETServer uses a technique of
providing the URI to the microservice method it can provide a unique link
designed for that session only with a timestamp embedded resulting in a secure
interaction environment that eliminates stale access to API calls.

Requests are implemented as ¡DIV¿ elements with an id tag that provides
the name of the request.

A request response will contain HTML document data that will be replaced
as the innerHTML of the request ’placeholder’. Variables specified in the view
will be rendered and the HTML is attached to the document structure where
the request exists.

The document content of the response may contain a script tag which con-
tains javascript that executes immediately after the HTML is attached to the
document.

1.8 Business Entities

Business entities provide the framework in which to hang all thiese views and
logic. Business entities allow for the description of account, customers, products,
inventories and any other associated data elements that may be used in business
logic consideration.

Instances of business entities are considered entity objects or entity instances.
Interaction with business entities is performed using an object style interface
and JETServer uses mySQL underneath to perform the persistent storage op-
erations.

Views are associated with a business entity combined with a microservice
method to create functionality.

1.9 Microservice Methods

JETServer uses a microservices style architecture and provides access to backend
services through an API set that is designed to interact with the various view
components of the application.



1.10. URIS 9

Microservice methods are oriented around the business entity structure and
are used to provide information query handling as well as the add, update and
delete functionality of new business entity instances.

Microservice methods can also be used to provide lists of objects that can
be further used in modifying or removing instances.

Applications can be designed that employee various business logic entities.
Views that define forms for adding new customers or information on books or
some other data entity can be specified and attached to the business entity.
Common lists of objects that have filters applied can be retrieved and views
selected for presentation of the data.

1.10 URIs

A URI provides an external access string to be mapped to a site view. When
a browser submits a GET request to a URI that is mapped to the server then
it will return the resulting site marker forcing the session to check its current
state and send the appropriate information.

The URI may be specified as complete or partial. Partial URI specification
will match the pattern check but will also pass additional parameters not spec-
ified into the view so that it may parse the content and provide the appropriate
display result.

1.11 Packages

Packages provide extensibility to the JETServer environment by allowing cus-
tom tools, applications, themes, templates, entities and components to be added
to the server and utilized in the presentation. Installed packages are provided a
root namespace and all related content must be contained and extended by this
root path namespace.

Packages can contain many things including full application request flows
that can be integrated into other work flows or used as is.

Local code is setup automatically in a default package named ’local’. The
local package is always searched first when resolving names to finding objects.

The system itself maintains a package space which is where the tools and
control logic are kept. This space is static within the JETServer executable and
is not modifiable.

You can create an empty package and give it a namespace and write cus-
tom items into that package space. This package space can then be saved and
distributed on the JETStore if it provides useful utility to others.

It is intended to provide a JETStore for the user to browse for registered
packages of all kinds from themes to full application work flows. It is hopeful that
someday there will be a rich environment for providing tools and applications
for the JETServer system.



10 CHAPTER 1. BASIC CONCEPTS



Chapter 2

ServerCore Network
Platform

JETServer is utilizing the ServerCore library to implement the TCP networking
requirements. Using the Linux operating system and the epoll system architec-
ture JETServer delivers high performance networking with extreme control.

Written in C++ JETServer is designed for performance at all levels of the
technical implementation. Using the core namespace along with the http names-
pace to create the basic core functionality JETServer provides a framework in
which to create complete work flow patterns required to build complex applica-
tions.

11



12 CHAPTER 2. SERVERCORE NETWORK PLATFORM



Chapter 3

User Interfaces and Tools

3.1 View Layout Editor

The View Layout Editor provides a WYSIWYG interface for combining HTML
elements to formulate the presentation. Style sheet activities and parameters
are automatically maintained as elements are manipulated in a graphical en-
vironment. Previews provided by various automatic layout objects including
absolute mode which allows WYSIWYG placement of elements.

Development of a theme editor provides ability to allow user to set various
themes for the graphical elements of the design. Ability to view the layouts
using various theme data configurations provides a useful thematic testing en-
vironment.

The designed view layouts can be saved to create a view library and are
usually associated to an entity and placed into the workflow storyboard.

In order to create a subfunctionlity within a view you can add the request
object into the view layouts. As these layouts are rendered to the browser they
will make their subsequent requests to the server keeping the event chain alive
for the initiating or root request object.

3.2 Business Entity Editor

The Business Entity Editor provides a work management area to create and
maintain business entity related data and the relationship between them. A
repository provides for linking together data description elements with views
and work flow elements to create a feature rich base to construct highly capable
work flows for business and function.

Business Entities can have work flow processes attached to them. Processes
can be developed to interact with other entity work flows using an advanced
event management system.

13



14 CHAPTER 3. USER INTERFACES AND TOOLS

3.3 Storyboard Editor

The Storyboard Editor provides the designer the ability to layout the pages and
their components and design the flow relationships between the elements. As
designs require extending the control elements of various views the storyboard
editor keeps track of the request branching and allows the designer to maintain
control over the hierarchical flow elements of the UI design.

The design approach provides the ability to layout request objects and as-
sociate various URI elements to these internal request objects to generate a
complete presentation of the elements.

Various views can be layed out in the storyboard. Storyboards are based
around the request object as each request object will perform a request activity
which may result in a chain of further request events.



Chapter 4

JET Tag Reference

JET tags can be used within views as well as microservice methods to build
business logic.

15



16 CHAPTER 4. JET TAG REFERENCE

4.1 CALL

4.2 COMMENT

4.3 DATABASE

4.4 EXCLUDE

4.5 EXTRACT

4.6 FOR

4.7 IF.. ELSE

4.8 IFNOROW... ELSE

4.9 IFROW... ELSE

4.10 SYSTEM

4.11 TAG

4.12 WHILE

4.13 WHILEROW


