Contents

1 Overview 3
2 Linux epoll Interactions 5
3 The Core Server 7
4 Sample Server Example 9
4.1 The Server . . . . . . . . e 9
4.2 The Session . . . . . . . . . 11



CONTENTS



Chapter 1

Overview

Welcome to BMASockets Core Server. The server core was developed to pro-
vide a quick path to developing your server requirements on a high performance
Linux platform network. The design can be used to develop customing gam-
ing platforms or you can use any of the existing protocol session handlers to
implement your own compact high performance server using existing known

protocols.
The BMASockets Core Server provides existing handlers for the following
protocols:

1. HTTP and HTTPS
2. SIP and SIPS
3. HTTP streaming server

4. HTTP Web Sockets handler

The focus of the design is to extend the capabilities of two core objects to
create the interface to your own implementations.



CHAPTER 1. OVERVIEW



Chapter 2

Linux epoll Interactions

Linux provides an set of system calls to open a socket that is used to manage
the networking requests for multiple sockets from a single process. You can
find plenty of materials on the internet on epoll and how this function works.
The Core Server is designed around the concept of the socket (BMASocket) and
the handling of accepting connections on a binding socket and managing the
individual client sockets that are accepted.

TCP and UDP are both supported by the Core Server. The differences in
managing these socket types is abstracted through the use of the sessions object
(BMASession). This abstract class cannot be instantiated but is used instead
to extend into a customizable session object that will be used to manage the
protocol for the connected session. At the session level there is no difference
between the underlying socket type, whether it be UDP or TCP.

The TCP side of the fence incorporates the connection oriented design to
provide the sessions to the higher levels. Each client represents a socket that
has connected through the bind and accept system call method. Conversing
with a client in a TCP session returns the appropriate data through that socket
connection.

The UDP side of the fence incorporates session objects that are based
upon connectionless packets sent to a single receiving socket. The UDP server
(BMAUDPServerSocket) maintains a list of sessions which are managed accord-
ing the sending address of the packets received. Each remote address represents
a different client and interactions back to the session are sent through the single
socket to the corresponding remote address. This provides a seamless session to
the higher level activities of the server.

The interface provided through the session appears the same regardless of
the socket type. This affords the developer the opportunity to write UDP or
TCP socket handlers with no knowledge of the those protocols. Building a
game server would be the same for either type and both types could be enabled
simultaneously.



CHAPTER 2. LINUX EPOLL INTERACTIONS



Chapter 3

The Core Server

In order to provide flexibility to the Core Server several design factors have been
put in place. Creating a new server that handles a custom protocol requires
the extension of only two objects. These are the BMATCPServerSocket or
BMAUDPServerSocket, depending on the type desired, and the BMASession
object.

When extending the BMATCPServerSocket all that is needed is to override
the getSocket Accept() method to return an extended BMASession object. This
basically tells the server to spawn a new session of a particular type for every
new connection to the bound TCP port.

The extended BMASession object can override the onDataReceived() method
to handle the incoming requests for the socket. An entire application structure
could be built upon this mechanism to handle complex protocols with the client.



CHAPTER 3. THE CORE SERVER



5

Chapter 4

Sample Server Example

This chapter specifies the approach to extending and creating a customized
server. This example is focusing on a server used in gaming environments. The
gaming clients connect to the server to interact with other clients.

The BMA Server Core can provide all the features needed of a multiport
high demand server. The implementation of epoll combined with the ability to
manage job control load through the use of multiple threads provides a robust
request handling environment for all socket based architectures.

As the BMAEPoll object is started it will spawn the specified number of
threads which will in turn begin the socket handling functions necessary to
manage all network requests in the program. The main program itself is not
used but must not be allowed to return or end so it can be used to handle other
non sockets related processing in the application.

Additionally, this server example provides a console that is accessible through
a Telnet style server and does not currently incorporate any encryption (TLS)
or login authentication. This will be changing in the future.

4.1 The Server

The server provides a few interesting features that may not be readily apparent
when reading through the documentation.

Since each BMATCPServerSocket also inherits from BMACommand the
server can override a routine to output data relivant to the type of server you
are creating.

When creating the server you are asked to provide a command name as a
parameter. The inheriting server object can then obtain a list of connected
clients from a console object by typing this name in on a command line.

#ifndef BMAConsoleServer_h__
#define BMAConsoleServer_h__

#include ”includes”
#include "BMATCPServerSocket.h”



16

10 CHAPTER 4. SAMPLE SERVER EXAMPLE

#include "BMACommand.h”
class BMATCPSocket ;

class BMAConsoleServer : public BMATCPServerSocket {

public:
BMAConsoleServer (BMAEPoll &ePoll, std::string url, short int

port);
“"BMAConsoleServer () ;

BMASession * getSocketAccept () ;
void registerCommand (BMACommand &command) ;

int processCommand(BMASession *session) override; ///<Output the
consoles array to the console.

std :: vector <BMACommand *> commands;

b5

#endif

#include ”BMAEPoll.h”
#include ” BMAConsoleServer.h”

#include ”BMAConsoleSession.h”
#include "BMACommand.h”

BMAConsoleServer : : BMAConsoleServer (BMAEPoll &ePoll , std::string url
, short int port)
BMATCPServerSocket (ePoll , url, port, "consoles”) {
// ePoll.log.registerConsole (xthis);
// ePoll.log.write (0) << "BMAConsole initializing...” << endl;

}

BMAConsoleServer :: " BMAConsoleServer () {

}

BMASession * BMAConsoleServer :: getSocketAccept () {
return new BMAConsoleSession(ePoll, xthis);
}

void BMAConsoleServer :: registerCommand (BMACommand &command) {
commands. push_back (&command) ;
}

int BMAConsoleServer :: processCommand (BMASession *session) {

std ::stringstream out;

int sequence = 0;

for (BMASession xsession : sessions) {
out << 7 |” << ++sequence;
out << 7 |” << session—>getClientAddressAndPort () ;
out << 7 |” << std::endl;



4.2. THE SESSION

35 session—>write ((char x)out.str().c-str (), out.str().size());

37 return 0;

4.2 The Session

1 #include ”includes”

> #include ”BMAEPoll.h”

3 #include ”"BMAMP3File.h”

14 #include ”BMAConsoleServer.h”

5 #include ”"BMATCPServerSocket.h”

6 #include ”BMAStreamServer.h”

7 #include "BMAHTTPServer.h”

s #include ”BMASIPServer.h”

o #include "BMAHTTPRequestHandler.h”
10 #include "BMAMP3StreamContentProvider.h”
11 #include ”BMATimer.h”

12

13 int main(int argc, char sxargv) {
14

15 std::string ipAddress = 70.0.0.0";

17 BMAEPoll ePoll;
18 ePoll.start (4, 1000);

0 //
// Testing TCP server.

//

BMATCPServerSocket tcpServer (ePoll, ipAddress, 1028, ”users”);

o //
7 // MP3 Streaming Server
28 //

30 BMAStreamServer stream (ePoll, ipAddress, 1032, ”listeners”);
31 BMAMP3File tester (stream, ”../extravaganza.mp3”);

o/
34 // HTTP Server
35 //

37 BMAHTTPServer http(ePoll, ipAddress, 1080, ”"http”);
38 BMAHTTPRequestHandler handlerl (http, ”/”);

40 //
41 // SIP Server

w

44 BMASIPServer sip (ePoll, ipAddress, 5061, ”"sip”);

11

46 //
a7 // Console controller so the program can be monitored through
48 // a telnet session. BMATCPServerSocket can be registered as



12

// a command and will report its status when the command

CHAPTER 4. SAMPLE SERVER EXAMPLE

// entered on the console.

//

BMAConsoleServer console(ePoll, ipAddress, 1027);

console .
console .
console .
console .
console .

registerCommand (ePoll);
registerCommand (console ) ;
registerCommand (http) ;
registerCommand (sip) ;
registerCommand (stream) ;

A~~~

ePoll.start (4, 1000);

while (true)
sleep (300) ;

ePoll.stop();



